#### Investor Presentation August 12, 2021

#### Ambature, Inc. Presented by CEO Ron Kelly



Ambature, Inc. designs superconducting quantum materials to power an innovative and sustainable future.

### **Presentation Outline**

- Intellectual Property
- Commercial & Military Use Cases
- Go-To-Market Strategy
- Financial Metrics
- Q&A

Intellectual Property

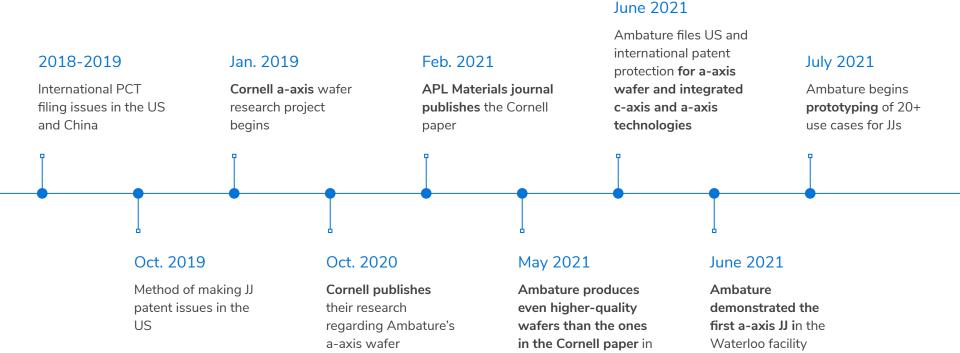
# Intellectual Property

Ambature has the leading global IP portfolio covering **a-axis High Temperature Superconductors (HTS)** with **Extremely Low Resistance (ELR)**—key fundamental technology **enabling next-generation applications** across multiple end markets.

#### Portfolio Differentiators

- Insulators vs. Semiconductors vs. Superconductors
- ELR materials combined with unique a-axis architecture

#### Portfolio Focuses


- High-speed/energy-efficient processing, sensing, imaging
- **Clean energy** creation, transportation and storage of electricity
- Higher-temperature superconductors

| 200+           | <b>3700+</b>  |
|----------------|---------------|
| Active Patents | Unique Claims |
| 20+            | 14+           |
| Product        | Years of      |
| Applications   | Research      |

#### **IP** Validation

- Our PCT filing and additional individual patents have issued in **8 of the 10** largest economies in the world.
- We have one of the largest superconductivity IP portfolios in the world.
- **190+ citations** include TSMC, Samsung, Qualcomm, GlobalFoundries, IBM, GE, BOE in China and the Chinese Academy of Sciences.
- **Peer-reviewed Applied Physics Letters published** our Cornell wafer research in February, building upon prior validation from NASA's Jet Propulsion Lab.
- Our first a-axis Josephson junction (JJ) was created in June.

### Josephson junction Timeline

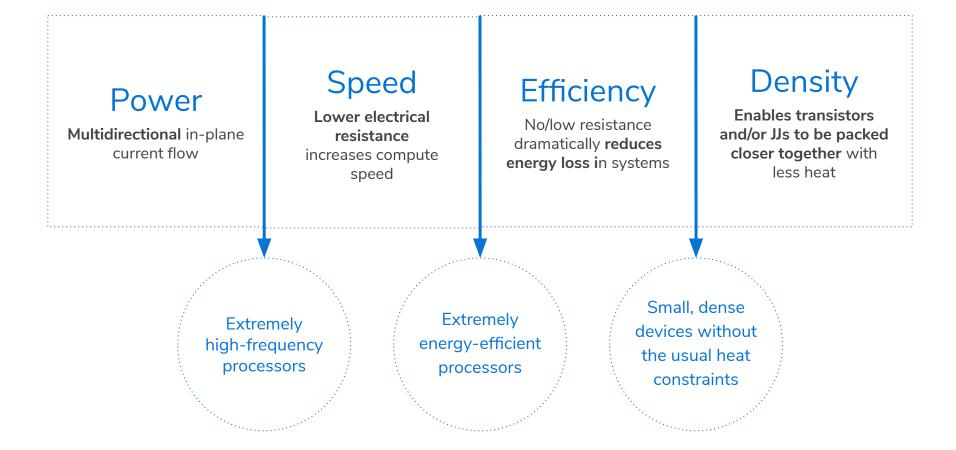


technology on arXiv.org Ambature's Waterloo

facility

### **APL Peer Review Comments**

#### Max Planck Institute

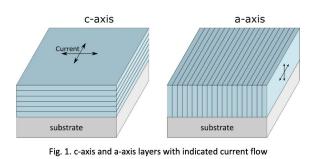

Samples obtain high quality, high superconducting transition temperature ~85 K, phase purity and improved surface quality with rms roughness less than a-axis superconducting coherence length, making these films promising candidates for fabricating Josephson junctions and other electronic devices.

#### Brookhaven National Lab

This is expected to be beneficial for fabrication of high-Tc Josephson junctions, a technologically very important and yet so far largely elusive target. This paper presents a significant step towards reaching this goal.

#### **Commercial & Military Use Cases**

#### Solving the Semiconductor Industry's Problem




# Advantages Along the A-Axis

#### Unique Growth Orientation

**Planes** of a-axis YBCO (or other materials) **are grown vertically like walls** rather than horizontally like sheets.

**The flow of current** in our materials determines the structure of our JJ.



#### Facilitates Tunneling More Efficiently

**C-axis devices require more complex circumvention** techniques such as the ramp junction illustrated below. A-axis designs seamlessly direct current flow between superconducting layers.

#### **Application Benefits**

- Controlled current in two directions
- 10X coherence length

lavers determine if tunneling is possible

- Easier mass commercialization fabrication in existing semiconductor foundries
- Tunneling is optimized in-line with the plane

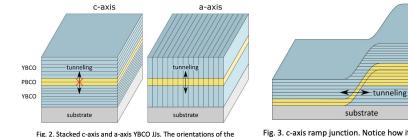
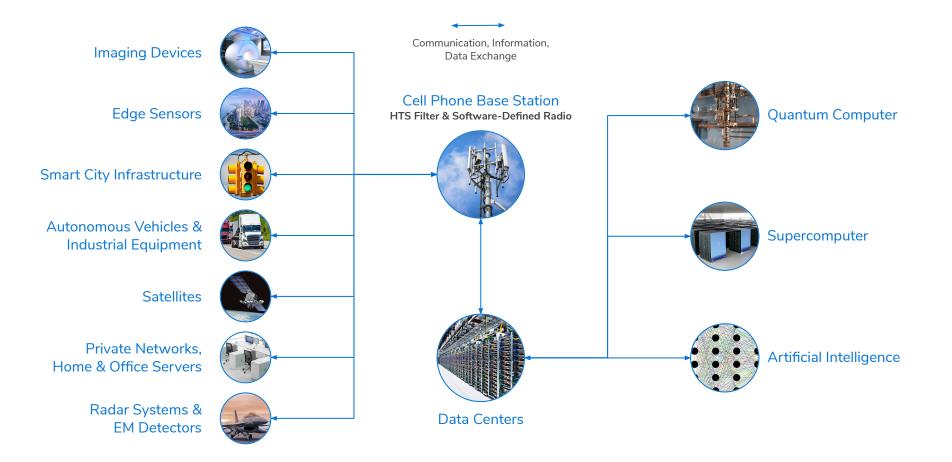




Fig. 3. c-axis ramp junction. Notice how it requires two PBCO layers, one as a thin tunnel layer and the other to isolate in the vertical direction

YBCO PBCO

YBCO

#### High-Performance Computing and Sensing



## Military & Civilian Infrastructure

Ambature's sensing capabilities enhance multiple military and civilian applications.

- Positioning, Navigation and Timing (PNT) signals need to be enhanced
- PNT signals need to be **continuous and accurate**, even where GPS is not available
- Communications should be unjammable



Bistatic, Over-the-Horizon, Quantum, etc.

Infrared Imaging

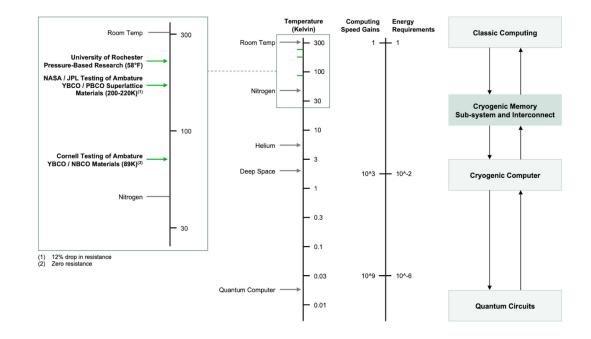
### Clean Energy Infrastructure & ESG



#### Generation

Rotating Machines (like Motors and Generators)

#### Transmission


Power Transmission Components, Transformers, Fault Current Limiters, Smart Grids

#### Storage

Batteries, Energy Storage Devices, Supercapacitors

### **High-Temperature Superconductors**

NASA's Jet Propulsion Lab published that Ambature has **"fabricated and tested a material that arguably holds promises for room temperature superconductivity.**" The **Chinese Academy of Sciences endorses a-axis architecture** for China's future superconductivity applications.



## Go-To-Market

### Macro Market Drivers

- Increasing need to deal with resistance/heat issues by cooling to enhance performance and cost/efficiency
- Proliferation of autonomy, advanced wireless, cloud servers / data centers, IoT and AI
- Growth in all market segments where we have a use case
- Need for **new materials and architectures** to derive more power, speed, efficiency, density and reliability from silicon wafers
- Smaller/cheaper **cryocoolers** entering the market
- The need for **longer quantum coherence** to drive quantum computing & other use cases
- Energy efficiency objectives and national security concerns regarding the chip supply chain coming from the Biden Administration and Congress
- **Recent chip shortages** impacting large segments of the economy such as automakers

#### Market Size



| $\mathbb{N}$ |
|--------------|
| $\mathbb{N}$ |
| $\setminus$  |
| $\searrow$   |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |

#### TOTAL ADDRESSABLE MARKET

USD 30 Billion



# Near-Term Technology Roadmap

- Develop **prototypes and measure KPIs** for telecoms, data centers, autonomous vehicles, medical devices, and advanced/quantum radar
- Develop stand-alone JJ processors and sensors for the Edge & Data Centers
- Further develop the core JJ technology and SQUIDs for integration with CMOS, silicon, and high-speed interconnects
- Further develop high-temperature superconductors to **at least -30°C**
- Identify **key foundry partners** for commercial and military applications
- Scale Ambature with **50-80 additional employees**

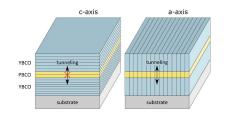
# Key Differentiators & Value Propositions

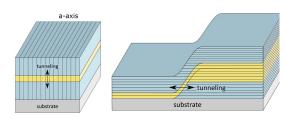
#### **Ideal Geometries**

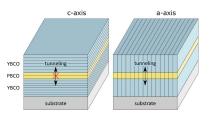
Ambature has achieved a-axis superconducting wafers with best-in-class thin and smooth layers.

Vertically-aligned devices enable current flow in both horizontal and vertical directions, **allowing direct tunneling of current from one superconductor to the next.** 

#### **Simpler Fabrication**


A-axis stacked devices allow for easier fabrication **as all layers are grown at once,** speeding up development and **reducing defects.** 


A-axis devices like JJs can be fabricated using **standard semiconductor equipment i**n a simplified fabrication process.

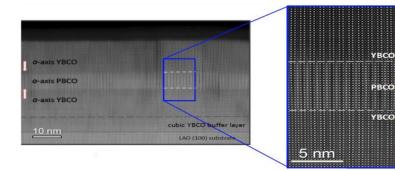

#### Better Superconductors

A-axis stacked devices have perfectly aligned tri-layers, creating an ideal coherence length and critical current.

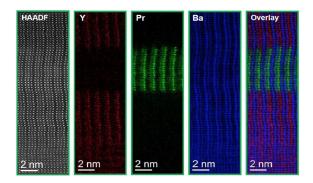
Ambature's materials transition to be superconductive at approximately 90 Kelvin, requiring less cooling than traditional niobium-based JJs.








#### **Cornell Delivers World-Class Results**


Ambature/Cornell used MBE and a **patented fabrication process** to successfully develop **extremely thin and smooth 100% pure a-axis** superconducting wafers, setting the stage for **commercialization**.

#### **Publication Findings**

- The thin and smooth design creates ideal material for Josephson tunneling and junctions.
- Achieved 100% a-axis YBCO-PBCO-YBCO tri-layer crystal synthesization.
- Demonstrated very thin and smooth **"sharp interfaces"** with the ability to go thinner.
- Clearly defined interfaces between tri-layers with a clear a-axis structure.



STEM-HAADF shows high-quality layers with near-perfect atomic alignment at interfaces



STEM-EELS shows precise control of layer composition

## Ready for Commercialization

|                                          | KPIs & Standard Metrics                                                                                                                                                                                                     | Ambature                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commercial<br>Recipe                     | <ul> <li>Leverage a temperature-ramping procedure during deposition to produce smooth, a-axis growth</li> <li>Transition to superconductivity at around 85-90 Kelvin</li> </ul>                                             | <ul> <li>Demonstrated precise control over growth conditions</li> <li>Consistently transitioned at around 85-90K</li> </ul>                                                                                                                                                                                                                                                                                                  |
| Fabrication-Ready<br>Wafers              | <ul> <li>Repeatable results on 3-inch substrate (100) LaAIO3</li> <li>Be compatible with Silicon and other substrates</li> <li>Be ready for Josephson junctions</li> <li>Be scalable to larger wafers and yields</li> </ul> | <ul> <li>Results and analysis were consistent across multiple 3-inch wafers</li> <li>Compatible with standard Silicon fabrication</li> <li>A-axis HTS trilayer fabrication is easier than c-axis HTS fabrication because c-axis grown structures are not trilayer</li> <li>Multiple JJ fabrication trilayer projects are underway</li> <li>Larger wafers and yields can be obtained using buffer layer technology</li> </ul> |
| High-Quality<br>A-Axis Crystals          | <ul> <li>Use X-Ray Diffraction ("XRD")</li> <li>Use Scanning Transmission Electron Microscopy ("STEM")</li> <li>Be more than 90% a-axis</li> </ul>                                                                          | <ul> <li>XRD was consistent across all samples</li> <li>STEM indicated near-perfect trilayer interfaces</li> <li>Images revealed more than 95% a-axis</li> <li>One sample was 100% a-axis, even under STEM</li> </ul>                                                                                                                                                                                                        |
| Root Mean Square<br>("RMS")<br>Roughness | <ul> <li>Surface roughness affects yield and electrical performance</li> <li>Use Atomic Force Microscopy ("AFM")</li> <li>Less than 1nm is comparable to high-quality silicon wafers</li> </ul>                             | <ul> <li>Consistently obtained less than 1nm roughness</li> <li>Lowest obtained roughness was 0.62nm, a significant reduction from the 11.3nm roughness in previous research</li> </ul>                                                                                                                                                                                                                                      |
| Sharp Interfaces                         | <ul> <li>Sharpness and thinness are required for good transport<br/>properties and quantum tunneling</li> <li>Use STEM</li> </ul>                                                                                           | <ul> <li>Images revealed near-perfect, sharp interfaces</li> <li>YBCO and PBCO interfaces were smooth, thin surfaces</li> <li>An independent industry STEM expert stated that our images are as good or better than anything seen in previous literature</li> </ul>                                                                                                                                                          |

### **Prototype Partners**





#### Military Ecosystem









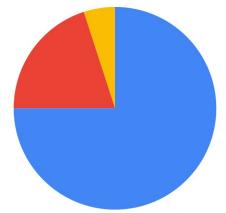






### **Financial Metrics**

### **Business Model**


# **Revenue Model**

Similar to Arm Holdings, Alphawave, and Graphcore (fabless). High-growth, high-margin, predictable.

Create IP 
 Protect IP 
 License IP

Ambature's IP model can attain ~90% Gross Margins with ~50-60% Net/EBITDA.

# Recurring Revenue Upfront License Fees Non-Recurring Engineering Fees



### **Growth Strategy**

- Maintain our leadership in a-axis superconductivity technology
- Expand our IP portfolio into **new markets and use cases**
- Integrate our technology with OEM platforms such as TSMC, Samsung, GlobalFoundries and Intel
- Solve key industry problems such as the need for high-speed interconnects
- Increase our superconductivity transition temperature to unlock new products
- Develop a customer intimacy strategy to increase our offerings over time

# Chip Design Comparables

| Transaction            | Valuation (\$BB) | Sale Price (\$BB) |
|------------------------|------------------|-------------------|
| Graphcore              | 2.8              |                   |
| Tenstorrent            | 1                |                   |
| Alphawave IP           | 2.9              |                   |
| Cadence Design Systems | 41.8             |                   |
| Synopsys               | 44.6             |                   |
| SambaNova Systems      | 5.1              |                   |
| Groq                   | >1               |                   |
| Lightwave Logic        | 0.9              |                   |
| Nuvia (Qualcomm)       |                  | 1.4               |
| Arm (SoftBank)         |                  | 32                |
| Arm (NVIDIA)           |                  | 38                |

As of August 6, 2021



ron.kelly@ambature.com



www.ambature.com